Approximate Traveling Waves in Linear Reaction-Hyperbolic Equations

نویسندگان

  • Avner Friedman
  • Gheorghe Craciun
چکیده

Linear reaction-hyperbolic equations arise in the transport of neurofilaments and membrane-bound organelles in axons. The profile of the solution was shown by simulations to be approximately that of a traveling wave; this was also suggested by formal calculations (Reed et al., 1990). In this paper we prove such a result rigorously1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Shock Waves for the Broadwell Equations

For the Broadwell model of the nonlinear Boltzmann equation, there are shock profile solutions, i.e. smooth traveling waves that connect two equilibrium states. For weak shock waves, we prove asymptotic (in time) stability with respect to small perturbations of the initial data. Following the work of Liu [7] on shock wave stability for viscous conservation laws, the method consists of analyzing...

متن کامل

Counter-propagating waves in a system of transport-reaction equations

Hyperbolic transport-reaction equations are abundant in the description of movement of motile organisms. Here, we focus on system of four coupled transport-reaction equations that arises from an agestructuring of a species of turning individuals. The highlight consists of the explicit construction and characterization of counter-propagating traveling waves, patterns which have been observed in ...

متن کامل

The Fredholm Alternative for Functional Diierential Equations of Mixed Type

We prove a Fredholm alternative theorem for a class of asymptotically hyperbolic linear diierential diierence equations of mixed type. We also establish the cocycle property and the spectral ow property for such equations, providing an eeective means of calculating the Fredholm index. Such systems can arise from equations which describe traveling waves in a spatial lattice.

متن کامل

Spectral Stability of Small-Amplitude Traveling Waves via Geometric Singular Perturbation Theory

This thesis is concerned with the spectral stability of small-amplitude traveling waves in two different systems: First, in a system of reaction-diffusion equations where the reaction term undergoes a pitchfork bifurcation; second, in a strictly hyperbolic system of viscous conservation laws with a characteristic family that is not genuinely nonlinear. In either case, there exist families φε, ε...

متن کامل

Stability of Traveling Waves for Degenerate Systems of Reaction Diffusion Equations

For the linearization of a degenerate reaction-diffusion system at a traveling pulse or front, we prove a theorem that allows one to derive information about the semigroup generated by the linear operator from spectral information about the linear operator itself. The result is used to complete existing proofs of stability of traveling fronts for the FitzhughNagumo equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2006